很多人对值域的求法,值域不是很了解那具体是什么情况呢,现在让我们一起来瞧瞧吧!
1、(1)化归法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
(资料图片)
2、换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
3、(2)图像法:根据函数图象,观察最高点和最低点的纵坐标(3)配方法:利用二次函数的配方法求值域,需注意自变量的取值范围(4)单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域(5)反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域(6)换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围[1](7)判别式法;利用二次函数的判别式求值域(8)复合函数法:设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域;(9)三角代换法:利用基本的三角关系式,进行简化求值。
4、例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦 用三角代换比较简单:做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。
5、;(10)基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
6、(11)分离常数法:把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子(2)图像法:根据函数图象,观察最高点和最低点的纵坐标(3)配方法:利用二次函数的配方法求值域,需注意自变量的取值范围(4)单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域(5)反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域(6)换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围[1](7)判别式法;利用二次函数的判别式求值域(8)复合函数法:设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域;(9)三角代换法:利用基本的三角关系式,进行简化求值。
7、例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦 用三角代换比较简单:做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。
8、;(10)基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
9、(11)分离常数法:把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子(2)图像法:根据函数图象,观察最高点和最低点的纵坐标(3)配方法:利用二次函数的配方法求值域,需注意自变量的取值范围(4)单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域(5)反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域(6)换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围[1](7)判别式法;利用二次函数的判别式求值域(8)复合函数法:设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域;(9)三角代换法:利用基本的三角关系式,进行简化求值。
10、例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦 用三角代换比较简单:做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。
11、;(10)基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
12、(11)分离常数法:把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。
本文【值域的求法(值域)】到此讲解完毕了,希望对大家有帮助。
版权声明:本文由用户上传,如有侵权请联系删除!标签: